A Normed G Space and Weakened Weak (w) Formulation of a Cell-based Smoothed Point Interpolation Method
نویسندگان
چکیده
This paper presents a normed G1 space and a weakened weak (W2) formulation of a cellbased smoothed point interpolation method (CS-PIM) for 2D solid mechanics problems using three-node triangular cells. Displacement fields in the CS-PIM are constructed using the point interpolation method (polynomial PIM or radial PIM) and hence the shape functions possess the Kronecker delta property facilitating the easy enforcement of Dirichlet boundary conditions. The edge-based T-schemes are introduced for selecting supporting nodes for creating the PIM shape functions and an adaptive coordinate transformation (CT) technique is proposed to solve the singularity problem for the moment matrix. Smoothed strains are obtained by performing the generalized smoothing operation over each triangular background cell. Because the nodal PIM shape functions can be discontinuous, a W2 formulation of generalized smoothed Galerkin (GS-Galerkin) weak form is then used to create the discretized system equations. Numerical examples including static, free and forced vibration problems have been studied to examine the present method in terms of accuracy, convergence, efficiency and temporal stability.
منابع مشابه
Edge-based Smoothed Point Interpolation Methods
This paper formulates an edge-based smoothed point interpolation method (ES-PIM) for solid mechanics using three-node triangular meshes. In the ES-PIM, displacement fields are construed using the point interpolation method (polynomial PIM or radial PIM), and hence the shape functions possess the Kronecker delta property, facilitates the enforcement of Dirichlet boundary conditions. Strains are ...
متن کاملA G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory
This paper introduces a G space theory and a weakened weak form (W2) using the generalized gradient smoothing technique for a unified formulation of a wide class of compatible and incompatible methods. The W2 formulation works for both finite element method settings and mesh-free settings, and W2 models can have special properties including softened behavior, upper bounds and ultra accuracy. Pa...
متن کاملSmoothed Point Interpolation Methods for 2d and 3d Elasticity Problems with Certified Solutions
A class of smoothed point interpolation methods (smoothed PIMs) are introduced in this paper, which are derived from the smoothed Galerkin weak-form for variational formulation based on the gradient smoothing techniques [1]. In the scheme of smoothed PIMs, the strain smoothing operation [2] can be applied on different types of smoothing domains which are constructed centring at field nodes, edg...
متن کاملThe effects of MHD flow of third grade fluid by means of meshless local radial point interpolation (MLRPI)
The meshless local radial point interpolation (MLRPI) method is applied to examine the magnetohydrodynamic (MHD) ow of third grade uid in a porous medium. The uid saturates the porous space between the two boundaries. Several limiting cases of fundamental ows can be obtained as the special cases of present analysis. The variations of pertinent parameters are addressed.
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کامل